An Ordered and Reliable Broadcast Protocol
for Distributed Systems :

Ye-In Chang and Ming-Hon Hwang
Dept. of Applied Mathematics
National Sun Yat-Sen University
Kaohsiung, Taiwan
R.O.C.

{E-mail: changyi@math.nsysu.edu.tw}
{Tel: 886-7-5316171 (ext. 3710)}
{Fax: 886-7-5319475}

Abstract

The purpose of a reliable broadcast protocol is to allow groups of nodes on unreliable broad-
cast networks to reliably broadcast messages. A reliable broadcast protocol must guarantee
two properties: 1) all of the receivers in a group receive the broadcast messages, and 2) each
of the receivers orders the messages in the same sequence. In an optimistic approach to
reliable broadcast protocol, a batch acknowledgement is employed for a sequence of broad-
cast messages, instead of one or more acknowledgement per broadcast message used in the
pessimistic approach. In this paper, based on the optimistic approach, we have proposed
a counter-based reliable broadcast protocol. In this protocol, the unique token ownership
is circulated among all the nodes in an order specified by a token-passing-list. The system
state which records related information about messages broadcast by each node is included
in the token message. By appropriately updating the counter information recorded in the
system state included in the token message, instead of using explicit acknowledgement mes-
sages, the proposed protocol needs fewer control messages to commit a broadcast message
than other protocols no matter the rate of transmission errors is high or low. Moreover, we
show how to handle the flow control problem, and the token update technique.

(Key Words: agreement problems, broadcast communication, distributed database systems,
distributed operating systems, fault tolerance, multicast communication)

!This research was supported by the National Science Council of the Republic of China, Grant No.
NSC-83-0404-E-110-007

1 Introduction

Broadcast communication is the delivery of copies of messages to all the nodes in a network
and is used in many applications, for examples, updating on replicated data, broadcasting
of real-time news, and computer conferencing [2, 3, 7, 15, 18]. For many applications,
it is important to receive all broadcast messages for all receiving nodes and accept those
messages in the same order, for example, updating on replicated data. However, it is
possible to occur that some broadcast messages are not received by all the nodes and
receiving nodes receive those messages in a different order because of the transmission
delay (or transmission errors) or because a buffer overflow within a receiver. Therefore,
how to design a broadcast protocol which is reliable is an important topic in distributed
systems.

Over the last decade, many reliable broadcast protocols for different kinds of networks
have been proposed. Segall et al. [27] have proposed a protocol for point-to-point net-
works, in which they extend adaptive routing [24] to be reliable. Chang et al. [6] have
proposed a protocol for Ethernets or satellite networks, in which all messages pass through
an intermediary node (called the token node); the token node determines the global order
of messages. Melliar-Smith et al. [22, 23] have proposed a protocol for local area networks
(LANSs), such as Ethernet or a token ring; based on the property of LANs, the protocol
piggybacks (positive or negative) acknowledgements to old broadcast messages on new ones
and guarantees that all nodes construct the same partial order of broadcast eventually. Bir-
man et al. [4, 5] have proposed a protocol (called ABCAST) for both local- and wide-area
networks, which is similar to the two-phase commitment. Luan et al. [20, 21] have proposed
a protocol for an arbitrary network of “fail-stop” nodes which is based on the three-phase
majority-consensus decision to commit on a unique order of received broadcast messages.
Chow et al. [9] have proposed a two-phase protocol which consists of the broadcast phase
and the reply phase; the protocol needs only bounded message buffer space if the network
is eventually connected in time that is finite and bounded.

The above protocols can all be classified into one approach: the pessimistic approach.
In the pessimistic approach, a broadcasting node must receive an explicit acknowledgement

from every receiving node. Therefore, this approach needs many explicit acknowledgement

messages. In [10], Chung et al. have proposed another approach to reliable broadcast
protocol: the optimistic approach. In general, broadcast protocols based on the optimistic
approach employ a batched acknowledgement, instead of using an explicit acknowledgement
for each broadcast message. In Chung et al.’s protocol, a receiving node acknowledges
all received messages when it becomes the token owner rather than one message at a
time. Therefore, the optimistic approach needs fewer control messages than the pessimistic
approach and is a preferred approach when the rate of transmission errors is low. However,
when the rate of transmission errors is high, a lot of rollback operations must be executed
(and many rollback messages will be sent out), and the system performance will be degraded
in Chung et al.’s protocol. Based on the optimistic approach, Amir et al. [1] have also
proposed a token-based reliable broadcast protocol. In this protocol, the total order is
achieved by including a sequence number in a token circulated around a logical ring, and
message loss is also detected by using the sequence number. However, in this protocol,
only the node in possession of the token can broadcast a message to the other nodes on the
logical ring.

In this paper, based on the optimistic approach, we propose a counter-based reliable
broadcast protocol for an unreliable network (which can be a broadcast network, or a point-
to-point communication network). The protocol operates between the application programs
and the network. It isolates the application programs form the unreliable characteristics
of the communication network. In this proposed protocol, the unique token ownership is
circulated among all the nodes in an order specified by a token-passing-list. The system
state which records related information about messages broadcast by each node is included
in the token message. By appropriately updating the counter information recorded in the
system state, instead of using explicit acknowledgement messages, the proposed protocol
needs few control messages to commit a broadcast message averagely no matter the rate of
transmission errors is high or low. (Note that a broadcast message can be committed only
if the order of the message is determined by all the nodes in the system.) The proposed
protocol can detect a message loss in at most two-cycles time, where a cycle is defined as
the time interval in which a node becomes the token owner again. Moreover, we show how

to handle the flow control problem, and the token update technique.

The rest of the paper is organized as follows. Section 2 describes the basic idea of the
proposed protocol. Section 3 presents the proposed protocol formally, describes the way
to handle the flow control problem and describes the token update technique. Section
4 discusses the performance of the proposed protocol. Section 5 discusses the level of

reliability that the proposed protocol can achieve. Finally, Section 6 gives the conclusion.

2 Basic Idea

In this section, we first describe assumptions made in our protocol. Next, we define the
data structure of the system state which is included in the token message. We then describe

the basic idea of the proposed protocol by an example.

2.1 Assumptions

Our discussion on reliable broadcast protocols are based on the following assumptions

[8, 11, 25, 26].

1. Each node has a unique ID and a complete list of the IDs of the other nodes in the

network, but has no information about the complete network topology.

2. Message delay is finite but unpredictable. Moreover, between any pair of nodes,

messages may not be received in the order in which they are sent.

3. An error checking mechanism is used to detect corrupt messages. A corrupt message
is treated as a lost message, as if it has never been received. That is, a message is

always regarded as a correct one once it is received.

4. Communication connections (i.e., links) may fail causing messages to be lost or de-
layed but will not cause network partition. A communication failure can be recovered
in finite time. When a communication link failure occurs, it can be detected by the

nodes on both ends.

5. A failed node simply stops execution (i.e., a fail-stop system). In particular, a node

may fail to broadcast or forward some messages but it will not create or transmit

Figure 1: The data structure of each element of the system state in the broadcast protocol

erroneous messages. That is, no Byzantine failure occurs. A node failure can be

detected and recovered in finite time.

6. Reliable broadcast protocols make use of unreliable broadcast primitives. An unreli-
able broadcast primitive delivers broadcast messages to all receiving nodes but does
not guarantee that each message is received by every receiving node. A reliable broad-
cast primitive, on the other hand, ensures that all broadcast messages are correctly

received by all receiving nodes.

7. The broadcast protocol does not involve programming the network switches. As a

consequence, the protocol has to be implemented at the host level.

2.2 Definitions

Basically, the proposed protocol makes use a token message to reduce the number of ac-
knowledgement messages. The token ownership is circulated among all the nodes in an
order specified by a token-passing-list. The data structure of each element of the system
state which is included in the token message is shown in Figure 1. There are three fields in
the system state: the message index field, the cycle field and the counter field. The mes-
sages index field records a sequence of message identifiers and the node identifiers = from
which the messages are sent out. The cycle field records which cycle the related messages
are sent out, where a cycle is the time interval that the same node & becomes the token
owner again from the last time. The counter field records the number of nodes which have
received those messages specified in the messages index field and the cycle field. (Note
that the value of those three fields can be updated only when a node becomes the token
owner.) Suppose the message index field contains “ala2a3”, the cycle field contains p and
the counter field contains 3. It means that there are three nodes which have received all

the messages with identifiers al, a2 and a3 that are broadcast by node A in cycle p.

Figure 2: An Example

2.3 An Example

In this example, we assume that there is no message loss, no delayed message and no node
failure. Suppose there are three nodes A, B, C in the system, the current token owner is
node A, the token-passing-list is (A, B, C) and the current cycle of node A is (p+1). Figure
2 shows the change of the system state during cycle p of node A.

In Figure 2-(a), the token owner A broadcasts a token (to transfer the token) message to
node B, and the current system state is included in the token message in which the current
message index field contains “ala2a3”, the cycle field contains p and the counter field
contains 0. It means that node A has broadcast messages with identifiers “ala2a3” in cycle
p and no node has acknowledged the messages. (Note that a node acknowledges a message
by increasing the value of related counter by one when it has received the message and
holds the token.) In Figure 2-(b), node B has become the token owner. Since during cycle
p, node B has broadcast messages with identifiers “b1b2b3”, node B adds such information
into the system state. Moreover, node B increases the value of node A’s counter field by
one since node B has already received such messages. Node B then broadcasts the token
message including the new system state to all the nodes.

Similarly, Figure 2-(c) shows the system state included in the token message broadcast

by node C. From this figure, we know that node C has received messages with identifiers

“ala2a3” and identifiers “b1b2b3” in cycle p that are broadcast by node A and B, respec-
tively, and has sent out messages with identifiers “clc2” in cycle p. At this time, every
node receiving the token message can ensure that the messages broadcast by node A in
cycle p have been received by every node in the system, since the value of the node A’s
counter field is equal to 2.

Next, node A becomes the token owner again. At this moment, node A increases the
value of current cycle by one to (p+2), adds information about messages identifier with
“adab” sent out in cycle (p+1) to the system state and increases the value of the counter
field of every other node by one since it has received all the messages. Moreover, since the
value of node A’s counter field in cycle p is equal to the total number of all other nodes
in the system, i.e., every node has received such messages broadcast by node A in cycle p,
node A deletes the related information from the system state.

In the same way, Figures 2-(d) and 2-(e) show the system state included in the token
message broadcast by node A and node B, respectively. Particularly, at this moment, since
every node has received all the messages broadcast in cycle p, every node can commit all
the messages (ala2a3, b1b2b3, clc2) sent out in cycle p when it receives the token message
broadcast by node B.

Note that a node commaits a message when it can ensure that the order of the message
is determined by all the nodes in the system, i.e., at this point, it can send this message
to the application in the upper layer of the system. In the proposed protocol, when the
messages broadcast in cycle p have been committed, it means that every node has received
the same set of broadcast messages. At this time, the order of those messages can be
determined locally in the same sequence by using some predefined rules. For example, for
a sequence of messages sent out from the same sender, their order can be determined by
the sequence number used locally at the sender. For the messages sent out from different
nodes, their order can be determined by a predefined rule. One simple way to do so is to
let the order of messages broadcast by different nodes always follow the same order of the
token-passing-list [10], that is, in the example, the order of messages broadcast in cycle p
is determined as (ala2a3, b1b2b3, clc2). The other possible way to determine the order of

messages broadcast by different nodes is to let this order also follow the same circular order

of the token-passing-list but starting from a different node at each time. For example,
suppose the order of broadcast messages in cycle (p-1) follows the circular order of the
token-passing-list starting from node B. Then in the example, the order of the messages
broadcast in cycle p is determined as (clc2, ala2a3, b1b2b3) since at this time, the order
should start from node C.

In the case that a message loss is detected by a node y, it broadcasts a request-for-
retransmission message which specifies the identifier of the original message sender, message
identifiers, the cycle number and node y’s own identifier to ask for retransmission. (Note
that since a node x sending messages out in cycle p will include such information in cycle
(p+1) when it becomes the token holder, other nodes y can detect a message loss from node
x when y receives the broadcast token message. This is done by comparing the message
identifiers which have been received with those recorded in the system state included in
the token message. Therefore, at the time when node y detects such a message loss, it also
knows from which node and in what cycle it should ask for retransmission.) A node receiving
the request-for-retransmission message and with the identifier of the original message sender
equal to itself, will broadcast the lost message again. (Note that at this time, node y does
not increase the value of node #’s counter field by one when node y becomes the token
owner; therefore, node x will not commit the messages until node y receives the messages
and increases the value of node ’s counter field by one.) Moreover, the information about
lost messages broadcast by node z is not removed from the system state until node =
becomes the token owner again and the value of node z’s counter field is equal to what it
expects.

Basically, there are two situations that a node can commit the messages broadcast in
cycle p. First, if the system state included in the token message shows that every node
has received all the messages broadcast in cycle p, and the messages broadcast before cycle
p have been committed, then a node can commit all the messages broadcast in cycle p
when it receives the token message. Second, in the case that a node does not receive some
broadcast token messages, then it still can commit the messages broadcast in cycle p when
the system state included in the token message does not contain the information about

cycle p (i.e., the information about cycle p has been deleted from the system state by the

senders) and all the messages broadcast before cycle p have been committed.

3 The Protocol

In this section, we first give a formal description of the protocol. Next, we consider the

problem of flow control, and then the token update technique.

3.1 The Formal Description

In this section, we give a formal description of the protocol. There are three types of
messages in the system, the broadcast message Msg, the token message T and the request-
for-retransmission message Req. The token message T'(¢, n,t,5) contains the current token
owner identifier ¢, the last token owner identifier n, the current cycle ¢, and the system
state S. A broadcast message Msg(i,rec, p, k,msg) contains the sender identifier ¢, the list
rec of the destination nodes’ identifiers in the broadcast group, the cycle number p, the
message identifier £ and the message body msg. If there is a message to be broadcast at any
time then broadcast it. The request-for-retransmission message Req(j,¢,p, k,n) contains
the sender identifier j, the receiver identifier ¢, the cycle number p, the message identifier &
and the request number n. Assume that there are N nodes in the system. There are four

possible events which can occur during each cycle at a node x:
1. The arrival of a token message.
2. The arrival of a broadcast message.
3. The arrival of a request-for-retransmission message.
4. The expiration of the token-owner timer.

In the event of the arrival of a token message, when a token message arrives at a node
x, node x checks whether it is the new token owner. This can be done by comparing its
own identifier with the next token owner identifier included in the token message. If it
is, node x resets its token-owner timer and increases the cycle number. (Note that the
token-owner-timer is used to avoid the case that a node holds the token ownership for too

long. When a node owns the token, it can update the system state included in the token

message.) Moreover, no matter node x is the new token owner or not, it can compare its
local information (about what messages it have received) recorded in its DataList with the
system state when it receives the broadcast token message. If an inconsistency is detected,
node = sends a request-for-retransmission message; otherwise, node x records those node
identifiers from which node = has received all the broadcast messages in IdList. If all
the messages broadcast in cycle p have been received by every node and all the messages
broadcast before cycle p have been committed, then node = commits all the messages
broadcast in cycle p.

In the event of the arrival of a broadcast message at a node z, if there is no such a
message in its Datalist, then node x inserts it to its DatalList; otherwise, node z discards
the message. In the event of the arrival of a request-for-retransmission message, the node
retransmits the required message if the message receiver is itself and this is a new request
which can be detected by checking the identifier of the request-for-retransmission message.

In the event of the expiration of the token-owner timer, the node must update the system
state S. It contains two operations: One is to update the counter field that the related
messages have been received. The other is to attach the messages that this node has sent
during the previous cycle to the system state S. Then the node passes the token ownership
and the new system state to the next token owner.

The protocol is described as follows:

/* for node x */ /* there are N nodes in the system */
/* the cycle number for node x is Px */
loop forever
§ koK oKk ok o Kok oK ok Kok oK Kok ok ok oK ok o Kok ok oK ok K
if there are messages to send then send them;
§ koK oKk ok o Kok oK ok Kok oK Kok ok ok oK ok o Kok ok oK ok K
case T(c, n, t, S):
if ((n = x) and (¢t = Px + 1)) or

((x is the start node) and (n = x) and (t = Px)) then

/* ¢ is the current token owner id */

/* n is the next token owner id */
/* t is the current cycle number */
/* S is the system state */

/* start node is the first node of the token-passing-list */
/* Px is the current cycle number of node x */
{
reset the token-owner timer;
if counter in S equals to what node x expects in cycle Px

{

remove the related information from S;
}
Px = Px+1;
}
if node x has received all the messages sent by node i in cycle Pi then
{
IdList = IdList + (i,Pi);
}
commit the messages sent in a certain cycle if it is possible;
if the local information of the DatalList is not consistent with the
system state S in cycle (t-1) then
{
loop:set request timer;
send Req(x, i, t-1, k, n);
/* x is the sender, t is the cycle number */
/* k is the lost message identifier */
/* 1 is the receiver, n is the request number */

if request timer is out and node x has not received the requested data then

{
n=n+1,;
goto loop;
b

b
5 kot ke ok ok sk ok ko s s ok sk sk skoke s ok sk skoke s ok sk skoke s ok kol e sk ok ok
case Msg(i, rec, p, k, msg):
/* i is the sender,
rec is the list of the
destination nodes’ identifiers in the broadcast group,
p is the cycle number,
k is the message identifier,
msg is the message body */
if there is no such a msg in the DatalList then insert it
else discard it;
5 kot ke ok ok sk ok ko s s ok sk sk skoke s ok sk skoke s ok sk skoke s ok kol e sk ok ok
case Req(j, i, p, k, n):
if (i = x) and (this is a new request) then
/* we use ’'n’ to recognize whether
the request is the new request or not. */
{
send Msg(x, rec, p, k, msg);
/* x is the sender, p is the cycle number,
k is the message identifier, msg is a message body */
/* rec is the list of the
destination nodes’ identifiers in the broadcast group */
b
5 kot ke ok ok sk ok ko s s ok sk sk skoke s ok sk skoke s ok sk skoke s ok kol e sk ok ok
case token-owner timer has expired:
{
/* update system state S: */
{

for every node i for any message in IdList do

10

{

increase the counter field of node i of message Mi of cycle Pi by 1;
IdList = IdList - (i, Pi);

b

S = 5 + messages sent out in the previous cycle by node x;
b
broadcast token message T(x, y, Px, S)
/* y is the one next to x in the token-passing-list */

}

3 eokok ok ok ok ok ok ok ok ok ok ok sk sk sk ok ok sk sk s e e ok ok ok ok skok sk sk sk sk ok ok
endloop;

3.2 Flow Control

A basic characteristic of reliable broadcast is that the rate of broadcasting messages cannot
exceed the rate at which the slowest processor can receive messages [1]. At faster rates of
broadcasting, the input buffer of the slowest receiver will become full and messages will
be lost. Retransmission of these messages will result in an increase in message traffic
and a reduction in the useful transmission rate. Therefore, a broadcast protocol without
an effective flow control mechanism will easily overwhelm the slowest receiver. The flow-
control mechanism should allow a high transmission rate when all nodes are able to process
messages at that rate. However, to prevent buffers from overflowing and messages from
being lost, the mechanism must dynamically restrict the flow of messages to the rate at
which messages can be processed. The response time of the flow control mechanism is
determined by the size of the message buffer in each node. To ensure that buffer overflow
does not occur, during the interval from the time at which a node’s buffer becomes empty
and the next flow control message transmitted by that node, the other node must not
broadcast more messages than that node’s buffer can contain. Consequently, each node
must transmit flow control information at least once during any sequence of messages that
is sufficient to fill its buffer. To satisfy this requirement, in our flow control algorithm, we

include the following four fields into the token message:

1. The local field: it is an array with N entries; each entry = indicates that the message

buffer at node x is nearly overflow.

11

2. The localC field: it is an array with N entries; each entry x records the cycle number

that the related local field is set.
3. The global field: it indicates that the current network is nearly overloaded.
4. The globalC field: it records the cycle number that the global field is set.

When a node becomes the token owner and finds that its message buffer is nearly over-
flow, it will set its local field included in the token message to 1 and also record its cycle
number in the related localC field at the expiration of the token-owner timer. If the node
holding the token detects that the network is nearly overload, which can be detected by
counting the number of messages recorded in the system state, it will set the global field
to 1 and update the globalC field to the current cycle number at the expiration of the
token-owner timer.

When a node receives the token message and finds that the entry x of the local field is
set to 1, 1t will not send any message to node z. A node can start to send messages to node
x when 1t receives a token messages in which the current cycle number is larger than the
cycle number recorded in entry x of the localC field and entry x of the local field is set to
0. When a node receives a token message with the global field equal to 1, it stops to send
any message. A node can start to send messages when it receives a token message in which
the current cycle number is larger than the cycle number recorded in the globalC field and
the global field is set to 0.

When a node = becomes the token owner and is not suffering the buffer overflow problem,
it resets entry x of the local field and the localC field to 0. If the node holding the token
detects that the network is not overload now, it resets the global field and the globalC field

to 0 at the expiration of the token-owner timer.

3.3 Token-Passing-List and Token Update

The token-passing-list specifies the order in which the token ownership is circulated among
nodes. There are three cases which will change the contents of the token-passing-list [19]:
(1) insertion of a node, (2) deletion of a node, and (3) a token failure.

In case one, when a node = wishes to participate the broadcast system, it listens for a

12

token message. When a token message is received, it then sends a participation request
message to the current token owner. When the current token owner receives the participa-
tion request message, it creates a new token-passing-list including the new node identifier
2 and sends the new list to all nodes in the token message. When a node receives this
token message, it will add the new node identifier z to its token-passing-list and update
the information about the number of the nodes in the system.

In case two, when a node x wishes to drop out of the broadcast system, it waits until
its turn to be the token owner. Node x then broadcasts a token message including a new
token-passing-list with its own node identifier deleted from the list. It leaves the broadcast
system after this token period. Each node receiving the token message updates its own
token-passing-list to delete the old node identifier x and update the information about the
number of the nodes in the system.

A token message may be delayed and a token owner may fail. These failures will cause
the faulty conditions where no node is the token owner (i.e., the lost token condition)
or two or more nodes are current token owners (i.e., the duplicate token condition). To
handle these failures, in case three, after the token owner = broadcasts the token message,
it listens for a predetermined period (which is longer than the token period) to make sure
that the next token owner broadcasts a token message [19]. When node x receives no token
message within this predetermined period, it concludes that the token is lost. Then node =
reissues a token message after a randomly chosen delay. When the node = does not receive
a token message from the next token owner after executing the above action for L times
(L > 0), it concludes that the next token owner has failed. Node x then generates a new
token-passing-list with the failed node deleted and sends the list with the token message
to the node which is next to node = in the current token-passing-list. In order to recover
from the duplicate token condition, the token owner = checks whether the token ownership
is returned to itself after exactly N token periods. If the token ownership is returned before
N token periods, node = concludes the presence of duplicate tokens. Node = gives up its
token ownership immediately. This operation may cause the lost token condition. In that

case, the lost token recovery action mentioned before is carried out to regenerate the token.

13

4 The Performance

In this section, we first show the performance analysis and the simulation results of the
proposed protocol, then we compare the proposed protocol with Chang et al.’s, Birman et
al.’s, Chung et al.’s and Amir et al.’s protocols [1, 4, 6, 10], where the first two protocols
[4, 6] belong to the pessimistic approach and the last two protocols [1, 10] belong to the

optimistic approach.

4.1 Performance Analysis

In this performance study, two models are considered: a broadcast network and a point-
to-point network. For each model, we look specially at two performance measures: (1) C,
the average number of control messages required to commit a broadcast message which
includes token messages and request-for-retransmission messages; (2) D, the time elapsed
between the beginning of the broadcast message and the time when all the nodes in the
system can make the message ready for local delivery.

In our performance model, we have the following assumptions. There are N nodes in
the system. The token-owner time is denoted as T'. Message propagation delay between
any two nodes is denoted as P. Moreover, we assume that the request to broadcast a
message arrive at a node according to Poisson distribution with a parameter A. That is,
1/exp(A, N) is the number of broadcast messages per second, where exp is an exponential
distribution function.

In a broadcast network, when no failure occurs, C in our protocol is equal to
L/(N*(T+P)/exp(A, N)) (= exp(A, N)/(N*(T+P))),

that is, during one token owner time T plus one message propagation time P, each of
N nodes with a broadcast request rate A can broadcast (T+P)/exp(A, N) messages, for
a total of N*(T+P)/exp(A, N) messages, and those messages are batch acknowledged by
one token message. From this formula, we find that as T is increased, C is decreased. The
reason is that when the token-owner time is increased, more messages can be broadcast
during that time, which are also acknowledged by one batched token message. Moreover,

as N is increased, C is decreased. Furthermore, as A is increased, C is decreased. The

14

reason is the same as above.

D in our protocol is equal to
(2NH(T+P))/(N*N*(TP) fexp(A, N)) (= 2exp(A, N)/N),

that is, during two-cycles time (i.e., 2*N*(T+P)), up to (N*N*(T+P)/exp(A, N)) mes-
sages can be broadcast by N nodes in the first cycle and committed at the end of the second
cycle. From this formula, we find that D will be the same no matter how T is changed.
Moreover, the system with a higher arrival rate (A) will need a smaller D than a system
with a lower arrival rate. Furthermore, as N is increased, D is decreased.

The above performance analysis is based on the assumption that no error occurs. Let
E be the error rate of communication failures which will result in a message loss. In this
case, message retransmission is required. When E is considered, in a broadcast network, C

in our protocol is equal to

(1/(N*(T+P)) Jexp(A, N))*(1+E+E24..)+(N-1)*(E+E24E* ...
(= exp(A, N)/(N*(T+P)*(1-E))+(N-1)*E/(1-E)),

where the first item is the number of the token messages and the second item is the
number of request-for-retransmission messages. Note that those retransmitted messages
may be lost (with an error rate E) again; therefore, the formula has an infinite equation.
However, since E < 0, 1+E+E*+... = 1/(1-E). From this formula, obviously, as E is
increased, C is increased. Moreover, as N is increased, C is increased. The reason is that
when E is considered, the number of request-for-retransmission messages will dominate the
performance.

In a point-to-point network, when no failure occurs, the control messages C in our

protocol is equal to
(N-D)/((N*(T+P)) fexp(A, N)) (= (N-1)%exp(A, N)/(N*(T+P))).

Since in this case, (N-1) token messages must be sent to the other (N-1) nodes. Moreover,
since the time ¢ spent in processing an incoming or outgoing message is negligible as
compared to the message propagation delay P (i.e., ¢ << P), the delay D of our protocol in
a point-to-point network, is the same as that in a broadcast network. When E is considered,

in a point-to-point network, C in our protocol is equal to

15

((N-1)/((N*(T4P)) /exp(A, N)))*(1+E+E24...)+(N-1)*(B+E2+E3+..)
(= (N-1)%exp(A, N)/(N*(T+P)*(1-E))+(N-1)*E/(1-E)),

where the first item is the number of the token messages and the second item is the

number of request-for-retransmission messages.

4.2 Simulation Results

In this simulation study, message propagation delay (P) between any two nodes is a constant
(PP) times a random number (between 0 and 1) with a uniform distribution to simulate the
unpredictable message delay. The token-owner time (T) is a constant. There are N nodes
in the system. The events of broadcasting messages at every node are created according
to the Poisson distribution with a parameter A. That is, 1/exp(A, N) is the number of
broadcast messages per second. Moreover, we only consider the case of communication
failures resulting in a message loss or delayed messages; we do not consider node failures. To
simulate the case of a message loss, we use a random function with a uniform distribution,
and then compare the value v (between 0 and 1) returned from the random number function
call with the chosen error rate E (also between 0 and 1) for each node x. If the value v is
smaller than the chosen error rate E, then we let the broadcast message to a certain node
x be lost, i.e.; we do not deliver it to node .

This simulation (written in SIMPAS) runs on a simulated broadcast network and a
point-to-point network on a single machine. Simulation experiments were carried out for
a homogeneous system of 10 nodes (N=10) and 20 nodes (N=20) for various values of the
error rate (E). Message propagation delay (PP) between the nodes was taken as 0.1, the
arrival rate (A) to broadcast a message was taken as 10 and 20 and the token owner time
(T) was taken as 1 and 5, respectively. For the performance measure, we collect the values
of these variables for 30000 broadcast messages.

Figure 3 shows the average number of control messages (C) as a function of the token
owner time (T) with different values of the arrival rate (A) in a broadcast network when no
error occurs. As T increases, C decreases, which is as what we expected in the performance
analysis. Moreover, the control messages C in Figure 3-(a) is about twice of those in Figure

3-(b) because the number of nodes in Figure 3-(a) is half of that in Figure 3-(b). When in

16

the normal condition (i.e., E = 0), the cost is smaller than 0.1 in all the cases.

Figure 4 shows the average number of control messages per broadcast message as a
function of the probability of errors given a fixed value of the arrival rate to broadcast a
message and a fixed value of token owner time. As we can see, the cost increases as the
error rate increases since the number of request-for-retransmission messages is proportional
to the error rate. When N is increased, the cost is also increased based on the same reason.
Moreover, given the same N, the cost in a broadcast network is also almost the same as

that in a point-to-point network based on the above reason.

4.3 A Comparison

Table 1 shows a comparison of performance of our protocol with Chang et al.’s (noted as
centralized), Birman et al.’s (noted as two-phase), Chung et al.’s (noted as optimistic) and
Amir et al.’s (noted as fast message) protocols [1, 4, 6, 10] in a broadcast network, where
Num equals to the sum of one broadcast message and the average control messages C per
broadcast message. Chang et al.’s centralized protocol [6] requires simply two messages:
one broadcast message from the source to the central node and one acknowledgement
message from the central node to the rest of the members of the destination group. Birman
et al.’s two-phase commit protocol [4] requires one broadcast message from the source
to (N-1) destinations, (N-1) messages containing the local highest sequence number from
the destinations to the source, and one message containing the global highest sequence
number back from the source to the destinations, for a total of (N+1) messages. Chung
et al.’s optimistic protocol [10] requires (1+1/N) messages to commit a message averagely,
since a batch acknowledgement message (i.e., the token message) is used and a node can
send out one broadcast message during one token owner time. Amir et al.’s fast message
ordering protocol [1] requires 2 messages to commit a message averagely, since a batch
acknowledgement message is used and a node can send out a broadcast message only when
it holds the token. Figure 5 shows a comparison of Num among the centralized, optimistic,
fast message protocols and two cases of our counter-based protocol (with an arrival rate
A = 10 and 20) under different values of N in a broadcast network, where N < 50. (Note

that since Num in the two-phase protocol is much larger than that in all other protocols,

17

D> %

D> %

X.
K

s
>
K

—D>

[>l> =

(b)

Figure 3: The average number of control messages of the simulation results in a broadcast

network: (a) N=10; (b) N=20.

18

*xo>0

*xo>0

(b)

Legend: arrival rate (A) - token owner time (T)

Figure 4: The average number of control messages of the simulation results when E >= 0:
(a) N = 20, a broadcast network; (b) N = 20, a point-to-point network.

19

approach pessimistic optimistic
algorithm centralized | two-phase | optimistic | fast message counter-based
[6] [4] [10] [1]
Num 2 N+1 1+1/N 2 1+ exp(A,N)/((T+ P)*N)
D 2P 3P T/N + P/N T+P 2« exp(A, N)/N

Table 1: A comparison of performance of reliable broadcast protocols in a broadcast network

B—10 O

[m]
[m]
[m]
[m]
[m]
[m]
[m]
o

+>000

O
—_
O—0 A
Qkﬁ—&—&) S G S t— ——

Figure 5: A comparison of Num in a broadcast network

we do not include it in this comparison.) From this figure, we show that the counter-based
protocol requires the fewest number of Num among those protocols. Moreover, as N is
increased, Num is decreased in the optimistic protocol.

Due to the characteristics of broadcast networks, each message has the same delay. This
delay consists of the time for the sender to put the message on the network, and the time
for the message to get to the other nodes (i.e., P). We assume that the first item is much
shorter than the second item; therefore, we let P be this total delay. The delay in Chang
et al.’s protocol [6] is 2*P and Birman et al.’s protocol [4] is 3*P. Chung et al.’s protocol
[10] requires (T/N+P/N) time to commit a message averagely. Amir et al.’s protocol [1]

requires (T4P) time to commit a message averagely. Figure 4.3 shows a comparison of D

20

Figure 6: A comparison of D in a broadcast network

approach pessimistic optimistic
algorithm centralized | two-phase optimistic fast message counter-based
6] [4] [10] [1]
Num N 3x(N—1) | (N— D)+ (N—1/N | 2«(N—1) | (N—1)+ (N — 1) * exp(A, N)/(T + P) * N)

Table 2: A comparison of performance of reliable broadcast protocols in a point-to-point
network

among the centralized, two-phase, optimistic, fast message protocols and two cases of our
counter-based protocol (with an arrival rate A = 10 and 20) under different values of N
in a broadcast network, where N < 50. From this figure, we show that the counter-based
protocol requires the shortest delay among those protocols. Moreover, as N is increased,
D is decreased in the optimistic protocol. Furthermore, the fast protocol, the two-phase
protocol and the centralized protocol have a constant value delay.

Moreover, when errors occur, Num in Chang et al.’s protocol [6] and Birman et al.’s
protocol [4] will be larger than that in our protocol. Although all three protocols send
out the same number of request-for-retransmission messages, but the number of positive
acknowledgements needed in these two protocols [4, 6] is larger than the number of the
token messages needed in our protocol. Furthermore, when errors occur, Chung et al.’s
protocol [10] may need up to (N-2) rollback request messages per lost message and the
whole system must discard a lot of previous received broadcast message (i.e., rollbacks to
the previous committed state). Although no explicit request-for-retransmission message is
used in Amir et al.’s protocol [1], their protocol takes a long time delay (i.e., a cycle time)
for the message sender to know that message retransmission is required. Moreover, since
only the node holding the token can send one broadcast message in [1], their protocol has
a low system throughput as compared to our protocol.

Table 2 shows a comparison of performance in a point-to-point network. Chang et al.’s
centralized protocol [6] requires one message from the source node to the token node and
(N-1) messages from the token node to the remaining nodes, for a total of N messages. In

Birman et al.’s two-phase protocol [4], the source node sends a request message to each of

21

Figure 7: A comparison of Num in a point-to-point network

(N-1) nodes, then these (N-1) nodes send their local priority to the source node. Finally,
the source node sends a message including the highest priority to those (N-1) nodes, for
a total of 3*(N-1) messages. Chung et al.’s optimistic protocol [10] requires (N-1)4(N-
1)/N messages to commit a message averagely. Amir et al.’s protocol [1] requires 2%(N-1)
messages to commit a message averagely. The delay D of these protocols in a point-to-point
network is almost the same as that in a broadcast network. Figure 7 shows a comparison
of Num among the centralized, optimistic, fast message protocols and two cases of our
counter-based protocol (with an arrival rate A = 10 and 20) under different values of N in
a point-to-point network, where N < 50. (Note that since Num in the two-phase protocol is
much larger than that in all other protocols, we do not include it in this comparison.) From
this figure, we show that the counter-based protocol and the optimistic protocol require
the fewest number of Num among those protocols. However, From Table 3, we show that,
in fact, our counter-based protocol still requires fewer number of Num than the optimistic

protocol.

22

Table 3: A comparison of Num between the counter-based protocol and the optimistic
protocol in a point-to-point network

5 Reliability

In this section, we discuss the level of reliability that our protocol can achieve and compare
it with those four algorithms [1, 4, 6, 10]. According to [13], there is a spectrum of reliability.
On the low end of the spectrum, there is no guarantee made on the reliability of ordered
deliveries, which is called R0. In the next level, it ensures that messages are delivered in a
consistent order at operational nodes, which is called R1. That is, nodes that have failed and
then came back up do not need to recover missed messages. Moreover, their message history
before failure becomes irrelevant. This implies that there can be inconsistent deliveries of
messages, but always involving failed nodes. Thus, there are never inconsistencies among
operational nodes. Next, stronger than consistent delivery at operational nodes is forcing
nodes that recover to roll back and re-deliver messages that they have delivered inconsistent,
which is called R2. In this case, failed nodes may temporarily deliver messages in an
incorrect order. However, after a failure, they must compensate for this and must also
recover any missed messages. Strongest on the scale is a strict ordering guarantee that
never allows inconsistent delivery, which is called R3.

Moreover, according to [1], reliable ordered delivery services can be categorized into

23

Figure 8: Five levels of reliable ordered delivery services

the following five levels of service: (1) basic, (2) FIFO, (3) casual, (4) agreed, and (5)
safe. The basic level of service guarantees that messages are delivered to the application
(without regard for ordering). Every node that receives a basic message can deliver that
message immediately. The F'TFO level of service ensures that messages originated by a
given node are delivered in the order in which they were originated. However, messages
from different nodes can be arbitrarily interleaved. The casual level of service, which is
taken from Lamport [17], is the reflexive transitive closure of the relation. Two properties
must be satisfied: (a) Message m precedes message m’ if node p delivers m before p sends
m', and (b) Message m precedes message m’ if node p sends m before p sends m’.

A message m is delivered by a node p in an agreed order in configuration C' if and only
if (a) p is a member of C, p has received m, and m was originated by a member of C' or of
a configuration that precedes C, (b) p does not deliver two different messages at the same
position in an agreed order in C' nor does it delivers one message at two different positions
in an agreed order in ', (c) p has delivered all messages that precede m in an causal order
in C, (d) p has delivered all messages that precede m in an agreed order in C, and (e) for
any other node ¢ in C', if p delivers m before n in an agreed order in ', then ¢ does not
deliver n before m in an agreed order in €. A message m is delivered by a node p in a safe
order in configuration C' if and only if it is delivered by p in an agreed order in €' and if p
knows that all nodes in C' have received and will deliver m.

The relationship among the five levels can be viewed in Figure 8. A comparison of levels

of reliability for our protocol and these four protocols [1, 4, 6, 10] is shown in Table 4.

24

approach pessimistic optimistic
algorithm centralized | two-phase | optimistic | fast message | counter-based
6] 4] [10])
[13] R3 R3 R2 R3 R3
agree agree safe safe safe
1 greed greed fe fe fe

Table 4: A comparison of levels of reliability for broadcast protocols

6 Conclusion

While the pessimistic approach to reliable broadcast protocols relies on the use of explicit
acknowledgements from each receiving node to ensure the reliability of messages delivery,
which results in a large number of control messages, the optimistic approach makes use
of an implicit batch acknowledgement included in a token to discard the use of explicit
acknowledgements. In this paper, based on the optimistic approach, we have proposed
a counter-based reliable broadcast protocol. By appropriately updating the counter in-
formation recorded in the system state included in the token message, instead of using
explicit acknowledgement messages, the proposed protocol needs fewer control messages
and shorter delay to commit a broadcast message than other protocols no matter the rate
of transmission errors is high or low. From our performance analysis, in the normal case
(i.e., the error rate = 0, as the token-owner time (or the number of nodes, or the arrival
rate of the events of broadcasting messages per second) is increased, the average control
messages per broadcast message is decreased. When the error rate (E) is considered, as E
(or the number of nodes) is increased, the average control messages per second is increased.
The reason is that when E is considered, the number of request-for-retransmission mes-
sages will dominate the performance. However, the average control messages to commit a
broadcast message in our protocol when errors occur is still less than all other protocols
(as explained in Section 4.3).. The time delay to commit a message is the same no matter
how the token-owner time is changed. As the number of nodes is increased, the time delay
to commit a broadcast message is decreased. Moreover, from the simulation results, our
protocol needs only no more than 0.1 control message per broadcast message in the nor-

mal condition. Furthermore, the level of reliability which the counter-based protocol can

25

Figure 9: The data structure of each element of the system state in the multicast protocol

achieve is no lower than all other protocols. We also have presented how to handle the flow
control problem and discussed the token update technique.

Multicast communication is the delivery of copies of messages to a multicast group which
is a collection of processes that are the destinations of the same sequence of messages
[4, 5,6, 12, 13, 14, 16]. We can extend the counter-based approach to ordered and reliable
multicast communication for distributed systems. This can done by including an IDs field
in the system state as shown in Figure 9, where the IDs field records the identifiers of the
destination nodes for the message specified in the message index field. A token owner x
can commit a message when the value of node x’s counter field for the message sent out
by node x equal to the expected number of the related IDs field. The extended protocol
for multicast communication does not have the overhead in setting up logical patterns (for
example, a tree) which are used in most of the other multicast protocols and can handle

the case of the change of group membership easily [11, 13, 14].

References

[1] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella, ”The Totem
Single-Ring Ordering and Membership Protocol,” ACM Trans. on Computer Systems, Vol.
13, No. 4, pp. 311-342, Nov. 1995.

[2] Amr El Abbadi, and Sam Toueg, “Maintaining Availability in Partitioned Replicated
Databases,” ACM Trans. on Database Systems, Vol. 14, No. 2, pp. 264-290, June 1989.

[3] Philip A. Bernstein, and Nathan Goodman, “Multiversion Concurrency Control-Theory and
Algorithms,” ACM Trans. on Database Systems, Vol. 8, No. 4, pp. 465-483, December 1983.

[4] Kenneth P. Birman, and Thomas A. Joseph, “Reliable Communication in the Presence of
Failures,” ACM Trans. on Computer Systems, Vol. 5, No. 1, pp. 47-76, February 1987.

[5] Kenneth Birman, Andre Schiper, and Pat Stephenson, “Lightweight Causal and Atomic
Group Multicast,” ACM Trans. on Computer Systems, Vol. 9, No. 3, pp. 272-314, August
1991.

26

[6]

[13]

[14]

[15]

Jo-Mei Chang, and N. F. Maxemchuk, “Reliable Broadcast Protocols,” ACM Trans. on
Computer Systems, Vol. 2, No. 3, pp. 251-273, August 1984.

J. Chang, “Simplifying Distributed Database Systems Design by Using a Broadcast Net-
work,” Proc. of ACM SIGMOD, Vol. 14, No. 2, pp. 223-233, 1984.

Bo-Shoe Chen, and Chia-Lin Tan, “A Distributed Fail-Safe Broadcast Routing Protocol,”
Proceeding of 1992 International Computer Symposium,, pp. 241-248, 1992.

Yuan-Chieh Chow, Kenneth C.K. Luo, and Richard Newman-Wolfe, “An Efficient Broadcast
Protocol in Networks with Changing Topologies,” Proc. of IEFE International Conf. on
Distributed Computing Systems, pp. 88-93, 1990.

Jen-Yao Chung, Jane W. 5. Liu and Kwei-Jay Lin, ”Optimistic Token-Driven Reliable Se-
quenced Broadcast Protocols,” Proc. of the 19th International Conference on Parallel Pro-
cessing, Vol. 3, pp. 303-310, 1990.

Hector Garcia-Molina, and Boris Kogan, “An Implementation of Reliable Broadcast Using an
Unreliable Multicast Facility,” Proc. of IEFE International Conf. on Distributed Computing
Systems, pp. 101-111, 1988.

Hector Garcia-Molina, and Annemarie Spauster, “Message Ordering in a Multicast Environ-
ment,” Proc. of IEEFE International Conf. on Distributed Computing Systems, pp. 354-361,
1989.

Hector Garcia-Molina, and Annemarie Spauster, “Ordered and Reliable Multicast Commu-
nication,” ACM Trans. on Computer Systems, Vol. 9, No. 3, pp. 242-271, August 1991.

Xiaohua Jia, and Shirley Y. SO, “A Multicast Mechanism with Ordering on Overlapping
Groups,” Proc. of IEEFE International Conf. on Network Protocols, pp. 242-249, 1993.

Thomas A. Joseph, and Kenneth P. Birman, “Low Cost Management of Replicated Data in
Fault-Tolerant Distributed Systems,” ACM Trans. on Computer Systems, Vol. 4, No. 1, pp.
54-70, February 1986.

M. Frans Kaashoek, Andrew S. Tanenbaum, Susan Flynn Hummel and Henri E. Bal, “An
Efficient Reliable Broadcast Protocol,” Operating Systems Review, Vol. 23, No. 4, pp. 5-19,
1989.

L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,” Comm.
of the ACM, Vol. 21, No. 7, pp. 558-565, July 1978.

Luping Liang, Samuel T. Chanson, and agaerald W. Neufeld, “Process Groups and Groups
Comm.: Classifications and Requirements,” IEFFE The Computer Magazine, Vol. 23, No. 2,
pp. 56-66, 1990.

Jane W.S. Liu, and Satoshi Hasegawa, “A Reliable Token-Driven Process Synchronization
Algorithm,” Proc. of IEEF International Conf. on Distributed Computing Systems, pp. H98-
604, 1986.

Shyh-Wei Luan, and Virgri D. Gligor, “A Fault-Tolerant Protocol for Atomic Broadcast,”
Proc. of Annual IEEE Symposium on Reliable Distributed Systems, pp. 112-126, 1988.

27

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Shyh-Wei Luan, and Virgil D. Gligor, “A Fault-Tolerant Protocol for Atomic Broadcast,”
IEFFE Trans. on Parallel and Distributed Systems, Vol. 1, No. 3, pp. 271-285, July 1990.

P. M. Melliar-Smith, and L. E. Moser, “Fault-Tolerant Distributed Systems Based on Broad-
cast Communication,” Proc. of IEEFE International Conf. on Distributed Computing Systems,
pp. 129-135, 1989.

P. M. Melliar-Smith, Louise E. Moser, and Vivek Agrawala, “Broadcast Protocols for Dis-
tributed Systems,” IEFFE Trans. on Parallel and Distributed Systems, Vol. 1, No. 1, pp. 17-25,
January 1990.

Philip M. Merlin and Adrian Segall, ” A Failsafe Distributed Routing Protocol,” IFFFE Trans.
on Comm., Vol., COM-27, No. 9, pp. 1280-1287, Sept. 1979.

Louise E. Moser, P. M. Melliar-Smith, and Vivek Agrawala, “Membership Algorithms for
Asynchronous Distributed Systems,” Proc. of IFEF International Conf. on Distributed Com-
puting Systems, pp. 480-488, 1991.

S.Navaratnam, S.Chanson, and G.Neufeld, “Reliable Group Communication in Distributed
Systems,” Proc. of IEEFE International Conf. on Distributed Computing Systems, pp. 439-446,
1988.

Adrian Segall and Baruch Awerbush, “A Reliable Broadcast Protocol,” IFEE Trans. on
Comm., Vol. Com-31, No. 7, pp. 896-901, July 1983.

28

